t^2-24t-132=0

Simple and best practice solution for t^2-24t-132=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for t^2-24t-132=0 equation:



t^2-24t-132=0
a = 1; b = -24; c = -132;
Δ = b2-4ac
Δ = -242-4·1·(-132)
Δ = 1104
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1104}=\sqrt{16*69}=\sqrt{16}*\sqrt{69}=4\sqrt{69}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-4\sqrt{69}}{2*1}=\frac{24-4\sqrt{69}}{2} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+4\sqrt{69}}{2*1}=\frac{24+4\sqrt{69}}{2} $

See similar equations:

| s×4-35=69 | | 4x-30=3x+1- | | t÷6-3=10 | | -31(b-34)=5(b+38) | | -d-7=3 | | 2x+8+4x-90=180 | | 7p+2=2p+11 | | -3m+16=67 | | (2x+3)+8=26 | | (n+2)(n-7)/2=35 | | 30(36p+20)-38p=40(13+26p) | | -2=q-(-16) | | (x+6)(x-1)=10 | | -21(29-11k)=783+231k | | 27=y+8y | | -901y=34 | | -901=34x | | 18=12v-9v | | 2x-8=×+6 | | 1/9(t-7)=-2 | | x/72=15/100 | | x=√529 | | i+i+1+i+2=288 | | m+26m=8(m+6)+29(35m-36) | | 3x=-5/11 | | -2x-6(7x-17)=62 | | (8y+17)=(10y-3) | | -4.2c+19.66=-5.4c−4.1 | | 12x^2-6x-8=0 | | 37a-18(5a+27)=-30(a-16) | | 15-3(2x-3)=60 | | 3s=s+52 |

Equations solver categories